https://www.halvorsen.blog

Simulation Examples

in LabVIEW

Hans-Petter Halvorsen

Contents

- Introduction to Differential Equations
- LabVIEW Simulation Examples - 1.order System
- Discretization
- We make a discrete version of the system using Euler then we simulate the system using LabVIEW
- For Loop and While Loop Simulation Examples
- LabVIEW Simulation Examples - 2.order System
- Using built-in ODE Functions in LabVIEW
- Python Integration
- MATLAB Integration
- Create and use a "Discrete Integrator". In that way we don't need to use time to find the Discrete Differential Equations()
- Simulation of 1.order System with Time Delay

https://www.halvorsen.blog

Differential Equations

Hans-Petter Halvorsen

Differential Equations

A general continuous differential equation can be written on this general form:

$$
\frac{d x}{d t}=f(t, x)
$$

A differential equation or a set of differential equations describes the dynamic behavior of a system

Differential Equations

Differential Equation on general form:

$$
\frac{d y}{d t}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

Initial condition
Different notation is used:

$$
\frac{d y}{d t}=y^{\prime}=\dot{y}
$$

$$
\frac{d y}{d t}=3 y+2
$$

$$
y\left(t_{0}\right)=0
$$

Initial condition
ODE - Ordinary Differential Equations
Differential equation

https://www.halvorsen.blog

Simulation Examples

1.order System

1. Order System

Differential Equation of a 1. order System:

$$
\begin{aligned}
& \dot{x}=-a x+b u \\
& y=x
\end{aligned}
$$

For control systems, u is typically the control value that comes from the controller, e.g., a PID controller.

Typically, in general we use x for internal variables in the process and y for the measured output(s). For larger systems we can have multiple $x\left(x_{1}, x_{2} \cdots\right)$ and multiple $y\left(y_{1}, y_{2} \cdots\right)$.

To simulate this model in LabVIEW you can e.g., make a discrete version of the model

1. Order System

Assume the following general Differential Equation:

$$
\begin{array}{cc}
\dot{y}=-a y+b u & \text { Input Signal } \\
\text { or: } & u(t) \\
\dot{y}=\frac{1}{T}(-y+K u) & \text { Where } a=\frac{1}{T} \text { and } b=\frac{K}{T}
\end{array}
$$ $u(t) \longrightarrow$ System

Output Signal $y(t)$

Where K is the Gain and T is the Time constant
This differential equation represents a 1 . order dynamic system

Assume $u(t)$ is a step (U), then we can find that the solution to the differential equation is:

$$
y(t)=K U\left(1-e^{-\frac{t}{T}}\right)
$$

1. Order Step Response

Find Solution for Diff. Equation

Given the 1. order System:

$$
\dot{y}=\frac{1}{T}(-y+K u)
$$

Let's use Laplace:

$$
\begin{gathered}
s y(s)=-\frac{1}{T} y(s)+\frac{K}{T} u(s) \\
y(s)\left[S+\frac{1}{T}\right]=\frac{K}{T} u(s) \\
y(s)=\frac{K}{T s+1} u(s)
\end{gathered}
$$

Then let's assume a Unit Step and use the Laplace Transformation pair $u(t) \Leftrightarrow \frac{U}{s}$

$$
y(s)=\frac{K}{T s+1} \cdot \frac{U}{s}=\frac{K}{(T s+1) s} \cdot U
$$

Then we use the Laplace Transformation pair $\frac{K}{(T s+1) s} \Leftrightarrow K\left(1-e^{-\frac{t}{T}}\right)$ to transform the system back to the time domain. This gives the following solution:

$$
y(t)=K U\left(1-e^{-\frac{t}{T}}\right)
$$

Simulation

The 1. order System:

$$
\dot{y}=\frac{1}{T}(-y+K u)
$$

Has the following known solution:

$$
y(t)=K U\left(1-e^{-\frac{t}{T}}\right)
$$

(You can use Laplace to find the solution, see previous page)

Let's Simulate this system in LabVIEW

Simulation - LabVIEW

$y(t)=K U\left(1-e^{-\frac{t}{T}}\right)$ Let's start with $K=8$ and $T=4$ and a step $U=1$

Here we have implemented the equation inside a Formula Node. In that way we can write the equations as we do on paper.

$$
y(t)=K U\left(1-e^{-\frac{t}{T}}\right)
$$

Improved Version

```
Simulation 1order System_Alt2.vi Block Diagram
File Edit View Project Operate Tools Window Help
\(\Rightarrow\) 空 II Pa
Here we can set the Sampling Time Ts and


\section*{https://www.halvorsen.blog}

\section*{Discretization}

\section*{Continuous vs. Discrete Systems}
\(x \uparrow \quad\) Continuous Signal
A computer can only deal with discrete signals
\(T_{S}\) - Sampling Interval
\(x(k-1)\) - Previous Value
\(x(k)\) - Current Value
\(x(k-1)\) - Next Value


\section*{Discrete Data}

Below we see a continuous signal vs the discrete signal for a given system with discrete time interval \(T s=0.1 \mathrm{~s}\). For continuous systems we use \(t\), while for discrete intervals we use \(k\).


\section*{Euler Forward method}

A simple discretization method is the Euler Forward method


Lots of other discretization methods do exists, such as Euler backward, Zero Order Hold (ZOH), Tustin's method, etc.

\section*{Discretization}

We have a general continuous differential equation:
\[
\frac{d x}{d t}=f(t)
\]

We can use Euler:
\[
\frac{d x}{d t} \approx \frac{x(k+1)-x(k)}{T_{s}}
\]

Then we get:
\[
\frac{x(k+1)-x(k)}{T_{s}}=f(k)
\]

This gives the following discrete differential equation:
\[
x(k+1)=x(k)+T_{s} f(k)
\]

\section*{Discretization}

We have the continuous differential equation: \(\dot{x}=-a x+b u\)
We apply Euler: \(\dot{x} \approx \frac{x(k+1)-x(k)}{T_{s}}\)
Then we get:
\[
\frac{x(k+1)-x(k)}{T_{s}}=-a x(k)+b u(k)
\]

This gives the following discrete differential equation (difference equation):
\[
x(k+1)=\left(1-T_{s} a\right) x(k)+T_{s} b u(k)
\]

This equation can easily be implemented in any text-based programming language or the Formula Node in LabVIEW
\[
\text { Where } a=\frac{1}{T} \text { and } b=\frac{K}{T}
\]

\section*{Discrete Model in LabVIEW}


\section*{Simulation Example}

\section*{D Discrete Simulation For Loop.vi Block Diagram \\ File Edit View Project Operate Tools Window Help \\ }


Tstop \(=\mathrm{N} \times \mathrm{Ts}=300 \times 0.1 \mathrm{~s}=30 \mathrm{~s}\)

\section*{Process Output Chat}

Here we have used a standard For Loop in our simulation. We specify the length of the Simulation with \(\mathbf{N}\) (Number of Iterations)


\section*{"Real-Time" Simulation in LabVIEW}

Discrete Simulation While Loop.vi Front Panel
File Edit View Project Operate Tools Window Help


Here we perform "Real-Time" Simulation using a While Loop. Her we can interact with the simulation during the execution, we can change simulation parameters any time during the simulation, and the simulation runs forever until we click the Stop button.

Process Value \(\left[{ }^{\circ} \mathrm{C}\right]\)
\(8.00 \quad\) Plot \(0 \longdiv { \bigwedge }\)
K
Process Output Chart
\begin{tabular}{l}
\begin{tabular}{|c|c|}
\hline-4 \\
4 \\
4 \\
4
\end{tabular} \\
\hline
\end{tabular}
u
1


\section*{LabVIEW Code}


\section*{https://www.halvorsen.blog}

\section*{Simulation Examples}

\title{
2.order System
}

Mass-Spring-Damper System

\title{
Mass-Spring-Damper System
}


The "Mass-Spring-Damper" System is typical system used to demonstrate and illustrate Modelling and Simulation Applications
\[
F(t)-c \dot{x}(t)-k x(t)=m \ddot{x}(t)
\]

Force \(-F[N]\), Spring constant \(-k[N / m]\), Damping coefficient \(-c[k g / s]\), Position \(-x[m / s]\), Velocity \(-\dot{x}\left[m / s^{2}\right]\), Acceleration \(-\dot{x}\left[m / s^{2}\right]\), Mass \(-m[k g]\)

\section*{Mass-Spring-Damper System}

Given a so-called "Mass-Spring-Damper" system
Newtons 2.law: \(\sum F=m a\)


The system can be described by the following equation:
\[
F(t)-c \dot{x}(t)-k x(t)=m \ddot{x}(t)
\]

Where \(t\) is the time, \(F(t)\) is an external force applied to the system, \(c\) is the damping constant, \(k\) is the stiffness of the spring, \(m\) is a mass.
\(x(t)\) is the position of the object \((m)\)
\(x(t) \dot{x}(t)\) is the first derivative of the position, which equals the velocity/speed of the object ( \(m\) )
\(\ddot{x}(t)\) is the second derivative of the position, which equals the acceleration of the object ( \(m\) )

\section*{Mass-Spring-Damper System}
\[
\begin{array}{ll}
F(t)-c \dot{x}(t)-k x(t)=m \ddot{x}(t) & \begin{array}{l}
\text { Higher order differential equations can typically } \\
\text { be reformulated into a system of first order } \\
\text { differential equations }
\end{array} \\
m \ddot{x}=F-c \dot{x}-k x & \\
\ddot{x}=\frac{1}{m}(F-c \dot{x}-k x) & \\
\text { We set } & \text { This gives: }
\end{array}
\]

Finally:
\[
\ddot{x}=\frac{1}{m}(F-c \dot{x}-k x)
\]
\[
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\frac{1}{m}\left(F-c x_{2}-k x_{1}\right)
\end{aligned}
\]

\section*{Discretization}

Given:
\[
\begin{gathered}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=\frac{1}{m}\left(F-c x_{2}-k x_{1}\right)
\end{gathered}
\]

Using Euler:
\[
\dot{x} \approx \frac{x(k+1)-x(k)}{T_{s}}
\]

Then we get:
\[
\begin{gathered}
\frac{x_{1}(k+1)-x_{1}(k)}{T_{S}}=x_{2}(k) \\
\frac{x_{2}(k+1)-x_{2}(k)}{T_{S}}=\frac{1}{m}\left[F(k)-c x_{2}(k)-k x_{1}(k)\right]
\end{gathered}
\]

Then we get:
\[
\begin{aligned}
& x_{1}(k+1)=x_{1}(k)+T_{s} x_{2}(k) \\
& x_{2}(k+1)=-T_{s} \frac{k}{m} x_{1}(k)+x_{2}(k)-T_{s} \frac{c}{m} x_{2}(k)+T_{s} \frac{1}{m} F(k)
\end{aligned}
\]

Finally:
\[
\begin{aligned}
& x_{1}(k+1)=x_{1}(k)+T_{s} x_{2}(k) \\
& x_{2}(k+1)=-T_{s} \frac{k}{m} x_{1}(k)+\left(1-T_{s} \frac{c}{m}\right) x_{2}(k)+T_{s} \frac{1}{m} F(k)
\end{aligned}
\]

This can be implemented in LabVIEW

This gives:
\[
x_{1}(k+1)=x_{1}(k)+T_{s} x_{2}(k)
\]
\[
x_{2}(k+1)=x_{2}(k)+T_{s} \frac{1}{m}\left[F(k)-c x_{2}(k)-k x_{1}(k)\right]
\]

\section*{Model Implementation in LabVIEW}

D Mass-Spring-Damper Model.vi Block Diagram
File Edit View Project Operate Tools Window Help

8 Sos


\section*{Simulation in LabVIEW}
Discrete Simulation Mass－Spring－Damper．vi Block Diagram
File Edit View Project Operate Tools Window Help
\(\Rightarrow\) 空（1） \(\square\)


\section*{LabVIEW}


\section*{https://www.halvorsen.blog}

\title{
ODE Functions in LabVIEW
}

\section*{ODE Functions in LabVIEW}

\section*{Mathematics}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Q Search 4 Customize*} \\
\hline \begin{tabular}{|c}
123 \\
+
\end{tabular} &  & \[
\left[\begin{array}{ll} 
\\
\hline 1 \times 1
\end{array}\right]
\] \\
\hline Numeric & Elementary & Linear Algebra \\
\hline \% & 目虽 & \(\mathrm{dm} / \mathrm{dt}\) \(\int x(t) d t\) \\
\hline Fitting & Interp \& Extrap & Integ \& Diff \\
\hline  &  & \(\underline{\frac{d x}{d t} 7}\) \\
\hline Prob \& Stat & Optimization & Differential Eqs \\
\hline \(\xrightarrow{4}\) & \(\sum_{i=0}^{n} a_{i} \mathrm{x}^{\text {i }}\) & - \\
\hline Geometry & Polynomial & Script \& Formula \\
\hline
\end{tabular}


\section*{ODE Euler Method.vi}


\section*{ODE Euler Method.vi - Alt2}
Simulation using Euler Function2.vi Block Diagram
File Edit View Project Operate Tools Window Help
圆



\section*{ODE Solver.vi}

D Simulation using ODE Function.vi Block Diagram
File Edit View Project Operate Tools Window Help



F(X,t)


冈
区 \({ }^{\circ} \mathrm{D}\)
time
t


Here we have used "ODE Solver.vi" instead of "ODE Euler Method.vi"

\section*{ODE Solver.vi}
```

Simulation using ODE Function.vi Front Panel
File Edit View Project Operate Tools Window Help

```



Ts
\(1 \stackrel{\Delta}{7}\)
Tstop
\(30 \stackrel{-}{7}\)

K 8



\section*{ODE Substitute Parameters in Formula.vi}



See if you can use "ODE Solver.vi" for implementing and simulating the Mass-Spring Damper System as well (I leave that to you)
\[
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\frac{1}{m}\left(F-c x_{2}-k x_{1}\right)
\end{aligned}
\]

\section*{https://www.halvorsen.blog}

\section*{Python Integration}


\section*{Python Integration Example}
```

def c2f(Tc):
Tf = (Tc * 9/5) + 32
return Tf
def f2c(Tf):
Tc = (Tf - 32)*(5/9)
return Tc
fahrenheit.py
We make a Python Module with 2 Functions, one that converts from Celsius to Fahrenheit and another that converts from Fahrenheit to Celsius
Tc}=
Tf = c2f(Tc)
print("Fahrenheit: " + str(Tf))
Tf = 32
TC= f2c(Tf)
print("Celsius: " + str(Tc))

```

We start by making the Python code using Spyder or another Python Editor

\section*{We test if it works:}
```

from fahrenheit import c2f, f2c

```
```

from fahrenheit import c2f, f2c

```

\section*{Python Integration Example}
```

File Edit View Project Operate Tools Window Help

```



Python Module Name


D Calling Python Function - Fahrenheit.vi Front Panel
File Edit View Project Operate Tools Window Help
眭 H

```

import numpy as np

```
def sim_ex():
    \# Model Parameters
    K = 3
    \(T=4\)
    \(a=-1 / T\)
    \(\mathrm{b}=\mathrm{K} / \mathrm{T}\)
    \#Simulation Parameters
    \(\mathrm{yk}=0\)
    \(\mathrm{uk}=1\)
    Tstop \(=30\)
    Ts = 1
    \(\mathrm{N}=\) int(Tstop/Ts) \# Simulation length

Here we make a discrete simulation example in Python using our 1.order model from previous examples

\section*{Simulation}
```

import matplotlib.pyplot as plt
from Simulation import sim_ex
\#Run Simulation
t, data = sim_ex()

Plot the Simulation Results

plt.plot(t,data,'-*')
plt.title('1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

```
    data = []
    data.append(yk)
    \# Simulation
    for \(k\) in range( \(N\) ):
        \#Model Implementation
        \(y k 1=(1+a * T s) * y k+T s * b * u k\)
        \(y k=y k 1\)
        data. append (yk1)
    \(\mathrm{t}=\mathrm{np}\).arange (0,Tstop+Ts,Ts)
    return t, data
        Simulation.py

\section*{LabVIEW Simulation Example}



Note! LabVIEW and Python needs to match.
I have LabVIEW 32 bits version installed and then I need to use a 32 bit Python version


The Python function returns 2 different return variables \(t\) and data, so I need to use a Cluster in order to specify these datatypes

\title{
LabVIEW Simulation Example
}
Simulation Example - Python.vi Front Panel

File Edit View Project Operate Tools Window Help

\begin{tabular}{|c|c|}
\hline - & Time \\
\hline \[
0
\] & 0 \\
\hline - & 1 \\
\hline & 2 \\
\hline & 3 \\
\hline & \\
\hline & 4 \\
\hline & 5 \\
\hline & 6 \\
\hline & \\
\hline & 7 \\
\hline & 8 \\
\hline & 9 \\
\hline & \\
\hline & 10 \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
1
\] & Data \\
\hline  & 0 \\
\hline & 0.75 \\
\hline & 1.3125 \\
\hline & 1.73438 \\
\hline & 2.05078 \\
\hline & 2.28809 \\
\hline & 2.46606 \\
\hline & 2.59955 \\
\hline & 2.69966 \\
\hline & 2.77475 \\
\hline & 2.83106 \\
\hline & \\
\hline
\end{tabular}


\section*{Virtual Python Environment}
- With Python you can create Virtual Environments.
- Here you can install your independent set of Python packages.
- In that way you can create an isolated environment where you can run your Python Applications/Scripts without destroying for other Applications/Scripts using other versions of different Python packages.
- You can create a Virtual Python Environment using venv command:
python -m venv/path/to/new/virtual/environment
- You can also use tools like Visual Studio, VenviPy, etc. to do this from a user interface.

\section*{Virtual Environment with Visual Studio}
回
Search Solution Explorer（Ctrl＋＂）
م．
愿 Solution＇PythonApplication1＇（1 of 1 project）
4 包 PythonApplication 1
4 \(\boldsymbol{\square}\) Python Environments

4 槇 envhph1（Python 3.7 （32－bit））
® numpy（1．21．6）
苗 pip（10．0．1）
๒ setuptools（39．0．1）
－References
\(\square\) Search Paths

Add Environment．．．
T－View All Python Environments
■ Collapse All Descendants Scope to This
＊New Solution Explorer View
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Python Environments－ 4} \\
\hline \multicolumn{6}{|l|}{Add Environment．．．} \\
\hline Anaconda 2021.11 Continuum Anastics inc & 國 & \multicolumn{4}{|l|}{envhph1（Python 3.7 （32－bit））} \\
\hline \multirow[t]{2}{*}{envhph1（Python 3.7 （32－bit）） PythonApplication1} & \multirow[b]{2}{*}{國} & Overview & numpy & & \(\times\) \\
\hline & & Packages（PyPI） & ¢ numpy（1．21．6） & \multicolumn{2}{|l|}{\multirow[t]{13}{*}{（ \({ }^{1.26 .4 \times}\)}} \\
\hline \multirow[t]{3}{*}{Python 3.6 （ \(64-\)－bit） Python Software Foundation Python 3.7 （32－bit） Python Software Foundation} & 國 & & Run command：pip install numpy & & \\
\hline & \multirow[t]{2}{*}{国} & & Install numpy－aarch64 & & \\
\hline & & & Install numpy－alignments（0．0．10） & & \\
\hline \begin{tabular}{l}
Python 3.7 （64－bit） \\
Python Software Foundation
\end{tabular} & 国 & & Install numpy－allocator（1．2．0） & & \\
\hline \multirow[t]{8}{*}{Python 3.9 （64－bit）} & \multirow[t]{2}{*}{國} & & Install numpy－api－bench（0．1．0） & & \\
\hline & & & Install numpy－array－buffer（0．1．2） & & \\
\hline & & & Install numpy－camera（0．0．2） & & \\
\hline & & & Install numpy－choices（0．10） & & \\
\hline & & & Install numpy－cloud（0．0．5） & & \\
\hline & & & Install numpy－cursor（1．0．5） & & \\
\hline & & & Install numpy－dataframe（0．1．7） & & \\
\hline & & & Install numpy1（0．0．1） & & \\
\hline
\end{tabular}

Solution Explorer Python Environments
Properties
硈
Folder Name envhph1
Full Path
Version

C．DPyth
3.7

\section*{Virtual Python Environment}

\section*{Simulation Example - Virtual Python Environment.vi Block Diagram}

File Edit View Project Operate Tools Window Help


variables \(t\) and data, so I need to use a Cluster
in order to specify these datatypes

\section*{https://www.halvorsen.blog}

\section*{MATLAB Integration}


\section*{MATLAB Integration Alt1}


\section*{MATLAB Integration Alt1}


\section*{MATLAB Integration Alt2}
```

function [t, x1, x2] = mass_spring_damper_system()
% Simulation of Mass-Spring-Damper System
clear
clc
% Model Parameters
c = 4; % Damping constant
k_stiff = 2; % Stiffness of the spring
m = 20; % Mass
F = 5; % Force
% Simulation Parameters
Ts = 0.1;
Tstart = 0;
Tstop = 60;
N = (Tstop-Tstart)/Ts; % Simulation length
t = Tstart : Ts : Tstop;
x1 = zeros(N,1);
x2 = zeros(N,1);
x1(1) = 0; % Initial Position
x2(1) = 0; % Initial Speed
% Simulation
for k=1:N
x1(k+1) = x1(k) + Ts * x2(k);
x2(k+1) = (-(Ts*k_stiff)/m) * x1 (k) + (1 - (Ts*C)/m) * x2(k) + (Ts/m) * F;
end

```

\section*{MATLAB Integration Alt2}


\section*{MATLAB Integration Alt2}
```

D Discrete Simulation MATLAB Integration - Alt2.vi Front Panel
File Edit View Project Operate Tools Window Help

```

\[
\begin{array}{|l|l|}
\hline-0 \\
\hline
\end{array}
\]
\begin{tabular}{|r|}
\hline 0 \\
\hline 0.1 \\
\hline 0.2 \\
\hline 0.3 \\
\hline 0.4 \\
\hline 0.5 \\
\hline 0.6 \\
\hline 0.7 \\
\hline 0.8 \\
\hline 0.9 \\
\hline 1 \\
\hline 1.1 \\
\hline 1.2 \\
\hline 1.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline  & 0 & 0 \\
\hline - & & 0 \\
\hline & & 0.0025 \\
\hline & & 1.00745 \\
\hline & & 147985 \\
\hline & & \\
\hline & & < 44926 \\
\hline & & 36478 \\
\hline & & 26992 \\
\hline & & \\
\hline & & \% 70995 \\
\hline & & \({ }_{2} 56211\) \\
\hline & & 126205 \\
\hline & & L28792 \\
\hline & & \\
\hline & & \({ }_{5}^{5} 53321\) \\
\hline & & 1.17973 \\
\hline & & \\
\hline
\end{tabular}
```


XY Graph

- In the Alt2 Example we just got the results from the Simulation
- Let's also make it possible to set the Model Parameters, etc. from LabVIEW
- This will then be sent as arguments to the MATLAB Function

MATLAB Alt2 - Improved

```
function [t, x1, x2] = mass_spring_damper_system2(c, k_stiff, m, F)
% Simulation of Mass-Spring-Damper System
% Simulation Parameters
Ts = 0.1;
Tstart = 0;
Tstop = 60;
N = (Tstop-Tstart)/Ts; % Simulation length
t = Tstart : Ts : Tstop;
x1 = zeros(N,1);
x2 = zeros(N,1);
x1(1) = 0; % Initial Position
x2(1) = 0; % Initial Speed
% Simulation
for k=1:N
    x1(k+1) = x1(k) + Ts * x2(k);
    x2(k+1) = (-(Ts*k_stiff)/m) * x1 (k) + (1 - (Ts*C)/m) * x2(k) + (Ts/m) * F;
end
```


MATLAB Alt2 - Improved

https://www.halvorsen.blog

"Discrete Integrator"

"Discrete Integrator"

- In previous examples we needed to first find a discrete version of our differential equation(s) using Euler or other discretization methods
- In can be time-consuming and cumbersome to find these discrete differential equations
- So, we may want to create a "Discrete Integrator" and in that way we don't need to solve or find discrete versions of the differential equation(s)

Integrator

Assume a general Differential Equation:

$$
\dot{x}=f(t, x)
$$

The purpose is to find x.
So, to find x we can Integrate $f(t, x)$:

$$
x=\int f(t, x)
$$

Discrete Integrator

Given

$$
\dot{x}=f(t, x)
$$

We use Euler to find a discrete version

$$
\dot{x} \approx \frac{x(k+1)-x(k)}{T_{s}}
$$

Then we get:

$$
\frac{x(k+1)-x(k)}{T_{S}}=f(k)
$$

Which gives:

$$
x(k+1)=x(k)+T_{s} f(k)
$$

LabVIEW Integrator

Her is the LabVIEW implementation of our Integrator. Basically, we can use this for all kind of differential systems, either we have one or many differential equations. Here is a Formula Node used, but you could have used pure LabVIEW code as well

$\mathrm{f}(\mathrm{k})$

x0
0.00

Ts

LabVIEW Integrator - Alt2

Integrator2.vi Block Diagram

We can also improve the Integrator block by implementing Saturation, i.e., include inputs for Lower Limit and Upper Limit

Here we have used pure LabVIEW code instead of a Formula Node

Simulation Example

We have the general differential equation:

$$
\dot{x}=f(t, x)
$$

Then

$$
x=\int f(t, x)
$$

Let's test out this discrete Integrator on our standard 1.order system:

$$
\dot{x}=\frac{1}{T}(-x+K u)
$$

$\dot{x}=\frac{1}{T}(-x+K u)$
 LabVIEW

Now we only need to implement the right side of the differential equation. Then we use our new "Discrete Integrator" to find the solution in each iteration

Model Parameters

Ts

LabVIEW

2.order System

Let's test out new Integrator block on a 2.order system. We can use the previous Mass-SpringDamper System:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\frac{1}{m}\left(F-c x_{2}-k x_{1}\right)
\end{aligned}
$$

D Simulation using Discrete Integrator for Mass-Spring-Damper System.vi Front Panel
File Edit View Project Operate Tools Window Help

LabVIEW - 2.order System

File Edit View Project Operate Tools Window Help

LabVIEW - 2.order System

https://www.halvorsen.blog

1.order System with

Time Delay

Time Delay

The equation for a Time Delay can be written as:
Laplace Transformation pairs:
$y=u(t-\tau)$

$$
\begin{aligned}
& \dot{x} \Leftrightarrow s x(s) \\
& u(t-\tau) \Leftrightarrow u(s) e^{-\tau s}
\end{aligned}
$$

$$
y(s)=u(s) e^{-\tau s}
$$

This gives the following Transfer function:

$$
H(s)=\frac{y(s)}{u(s)}=e^{-\tau s}
$$

Time Delay

Transfer Function for Time Delay:

$$
H(s)=e^{-\tau s}
$$

Step Response for a Time Delay:
τ is the Time Delay in seconds

1.order System with Time Delay

A general 1. order System with Time Delay can be written as:

$$
\dot{x}=-a x+b u(t-\tau)
$$

$$
\text { Where } a=\frac{1}{T} \text { and } b=\frac{K}{T}
$$

It can also be written like this:

$$
\dot{x}=\frac{1}{T}[-x+K u(t-\tau)]
$$

Where K is the Gain, T is the Time constant and τ is the Time Delay

Transfer Function

Transfer Function for Time Delay:

$$
H(s)=\frac{y(s)}{u(s)}=e^{-\tau s}
$$

1.order Transfer Function with Time Delay:

$$
H(s)=\frac{y(s)}{u(s)}=\frac{K}{T s+1} e^{-\tau s}
$$

Where K is the Gain, T is the Time constant and τ is the Time Delay

Step Response

Discrete Time Delay Function

Let's create a Discrete Time Delay Function in LabVIEW

The equation for a Time Delay can be written as:

$$
y=u(t-\tau)
$$

Discrete version:

$$
y(k)=u\left(k-\frac{\tau}{T_{S}}\right)
$$

Assuming, e.g., $\tau=2 s$ and $T_{s}=0.1 s$ we get $u(k-20)$
This means we must remember the 20 previous samples of $u(k)$ in our calculations

Discrete Time Delay Function

A Discrete Time Delay can be implemented as a FIFO queue. FIFO - First In First Out.
The length of the queue will be

$$
N=\frac{\tau}{T_{s}}
$$

> E.g.,
$\tau=2 s$ and $T_{s}=0.1 s$
Then we get $u(k-20)$

LabVIEW Time Delay Function

This is one way to implement a Time Delay in LabVIEW, but it can also be implemented in many other ways

```
File Edit View Project Operate Tools Window Help \(\Rightarrow\) 気 11 15pt Application Font


\section*{Test Time Delay Function}



When \(\mathrm{k}=21\) the Output will be 1 in this case



Input
( \(\frac{1}{-} 1\)


Output
0

\section*{Discretization}

We have the continuous differential equation: \(\dot{x}=-a x+b u(t-\tau)\)
We apply Euler: \(\dot{x} \approx \frac{x(k+1)-x(k)}{T_{S}}\)
Then we get:
\[
\frac{x(k+1)-x(k)}{T_{s}}=-a x(k)+b u\left(k-\frac{\tau}{T_{s}}\right)
\]

This gives the following discrete differential equation (difference equation):
\[
x(k+1)=\left(1-T_{s} a\right) x(k)+T_{s} b u\left(k-\frac{\tau}{T_{s}}\right)
\]

Assuming \(\tau=2 s\) and \(T_{s}=0.1 s\) we get \(u(k-20)\)
This means we must remember the 20 previous samples of \(u(k)\)

\section*{LabVIEW}

\section*{Discrete Model with Timedelay.vi Block Diagram}

File Edit View Project Operate Tools Window Help



Initial Value \(\left[{ }^{\circ} \mathrm{C}\right]\)


Discrete Model with Timedelay.vi Front Panel
File Edit View Project Operate Tools Window Help
 HB Model
u
\(\sqrt{1}\)

Process Value \(\left[{ }^{\circ} \mathrm{C}\right]\)

Initial Value \(\left[{ }^{\circ} \mathrm{C}\right]\)
0.00

Model Parameters
K
\(\sqrt[\square]{1}\)
T
\(\sqrt[4]{4}\)
Delay [s]
\(\sqrt[\square]{2}\)

Ts
\begin{tabular}{|c|c|c|}
\hline u & \multicolumn{2}{|l|}{Process Value [ \({ }^{\circ} \mathrm{C}\) ]} \\
\hline (1) & 7.99 & Plot \(0 \triangle\) \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline K \\
\hline (10)8 \\
\hline T \\
\hline \(\sqrt{4}\) \\
\hline Delay [s] \\
\hline \(\sqrt{6}\) \\
\hline
\end{tabular}

\section*{Ts [s] \\ 0.1}

Process Output Chart



\section*{Alternative Model Implementation}

Here is the "Integrator" SubVI used (that was created and tested in previous
\(\geq\) Model 1order witt
File Edit View Pr \(\Rightarrow\) 空 examples). By using this SubVI we don't need to find the discrete version of the differential equation, we just implement the differential equation "directly"


\section*{Hans-Petter Halvorsen}

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no Web: https://www.halvorsen.blog```

