
Hans-Petter Halvorsen

https://www.halvorsen.blog

Simulation Examples 
in LabVIEW



Contents
• Introduction to Differential Equations
• LabVIEW Simulation Examples - 1.order System
• Discretization

– We make a discrete version of the system using Euler then we simulate the 
system using LabVIEW

– For Loop and While Loop Simulation Examples
• LabVIEW Simulation Examples - 2.order System
• Using built-in ODE Functions in LabVIEW
• Python Integration
• MATLAB Integration
• Create and use a “Discrete Integrator”. In that way we don’t need to 

use time to find the Discrete Differential Equations()
• Simulation of 1.order System with Time Delay



Hans-Petter Halvorsen

https://www.halvorsen.blog

Differential Equations

Table of Contents



Differential Equations
A general continuous differential equation can 
be written on this general form:

𝑑𝑥
𝑑𝑡

= 𝑓 𝑡, 𝑥

A differential equation or a set of differential equations describes the dynamic 
behavior of a system



Differential Equations

𝑑𝑦
𝑑𝑡

= 𝑓 𝑡, 𝑦 , 𝑦 𝑡! = 𝑦!

𝑑𝑦
𝑑𝑡

= 𝑦! = �̇�

Different notation is used:

𝑑𝑦
𝑑𝑡

= 3y + 2, 𝑦 𝑡! = 0

Example:
Initial condition

Differential Equation on general form:

ODE – Ordinary Differential Equations

Initial condition
Differential equation



Hans-Petter Halvorsen

https://www.halvorsen.blog

Simulation Examples
1.order System

Table of Contents



1. Order System

1.order 
Process

𝑢 𝑦�̇� = −𝑎𝑥 + 𝑏𝑢
𝑦 = 𝑥

To simulate this model in LabVIEW you can e.g., make a discrete version of the model

Differential Equation of a 1. order System:

Typically, in general we use 𝑥 for internal variables in the process and 𝑦 for the measured 
output(s). For larger systems we can have multiple 𝑥 (𝑥!, 𝑥" 	⋯ ) and multiple 𝑦 𝑦!, 𝑦" 	⋯ .

For control systems, 𝑢 is typically the control value that comes from the controller, 
e.g., a PID controller.



�̇� =
1
𝑇
(−𝑦 + 𝐾𝑢)

Where 𝐾 is the Gain and 𝑇 is the Time constant

�̇� = −𝑎𝑦 + 𝑏𝑢 Dynamic 
System𝑢(𝑡) 𝑦(𝑡)

Assume the following general Differential Equation:

or:

Where 𝑎 = !
#

and 𝑏 = $
#

This differential equation represents a 1. order dynamic system

Assume 𝑢(𝑡) is a step (𝑈), then we can find that the solution to the differential equation is:

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒%
&
#)

Input Signal Output Signal

(by using Laplace)

1. Order System



100%

63%

𝐾𝑈

𝑡
𝑇

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒5
6
7)

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
𝐾

𝑇𝑠 + 1

𝑦(𝑡)
1. Order Step Response

Time constant

𝐾 is the Gain



Find Solution for Diff. Equation
Given the 1. order System:

�̇� =
1
𝑇 (−𝑦 + 𝐾𝑢)

Let's use Laplace:

𝑠𝑦 𝑠 = −
1
𝑇
𝑦 𝑠 +

𝐾
𝑇
𝑢(𝑠)

𝑦 𝑠 𝑆 +
1
𝑇
=
𝐾
𝑇
𝑢(𝑠)

𝑦 𝑠 =
𝐾

𝑇𝑠 + 1
𝑢(𝑠)

Then let's assume a Unit Step and use the Laplace Transformation pair 𝑢(𝑡) ⇔ !
"

𝑦 𝑠 =
𝐾

𝑇𝑠 + 1 0
𝑈
𝑠 =

𝐾
𝑇𝑠 + 1 𝑠 0 𝑈

Then we use the Laplace Transformation pair #
$"%& "⇔ 𝐾(1 − 𝑒'

!
") to transform the system back 

to the time domain. This gives the following solution:

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒'
(
$)

The Laplace Transformation pairs 
can be found in a Table of Laplace 
Transformations, e.g.,
https://www.intmath.com/laplace-
transformation/table-laplace-transforms.php

https://www.intmath.com/laplace-transformation/table-laplace-transforms.php
https://www.intmath.com/laplace-transformation/table-laplace-transforms.php


Simulation
The 1. order System:

�̇� =
1
𝑇
(−𝑦 + 𝐾𝑢)

Has the following known solution:

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒5
6
7)

(You can use Laplace to find the solution, see previous page)

Let's Simulate this system in LabVIEW



Simulation - LabVIEW
𝑦 𝑡 = 𝐾𝑈(1 − 𝑒%

&
#) Let's start with 𝐾 = 8 and 𝑇 = 4 and a step 𝑈 = 1

Here we have implemented the equation inside a 
Formula Node. In that way we can write the equations 
as we do on paper.



Improved Version
Here we can set the Sampling Time Ts and 
the simulation time Tstop from the GUI



Hans-Petter Halvorsen

https://www.halvorsen.blog

Discretization

Table of Contents



Continuous Signal

𝑡

𝑥

Discrete Signal

𝑘

𝑥

A computer can only deal with discrete signals

𝑥(𝑘)
𝑥(𝑘 + 1)

𝑥(𝑘 − 1)
𝑇'

𝑘

𝑘
+
1

𝑘
−
1 𝑘𝑇<

𝑇! - Sampling Interval

𝑥(𝑘) - Current Value
𝑥(𝑘 − 1) - Next Value

𝑥(𝑘 − 1) - Previous Value

Continuous vs. Discrete Systems



Discrete Data
Below we see a continuous signal vs the discrete signal for a given system with
discrete time interval 𝑇𝑠 = 0.1𝑠. For continuous systems we use 𝑡, while for discrete intervals 
we use 𝑘.



Euler Forward method
A simple discretization method is the Euler Forward method

Lots of other discretization methods do exists, such as Euler backward, Zero Order Hold (ZOH), Tustin's method, etc.



Discretization
We have a general continuous differential equation:

𝑑𝑥
𝑑𝑡

= 𝑓 𝑡
We can use Euler:

?@
?6
≈ @ ABC 5@ A

7!
Then we get:

𝑥 𝑘 + 1 − 𝑥 𝑘
𝑇<

= 𝑓 𝑘

This gives the following discrete differential equation:
𝑥 𝑘 + 1 = 𝑥 𝑘 + 𝑇<𝑓 𝑘



Discretization
We have the continuous differential equation: �̇� = −𝑎𝑥 + 𝑏𝑢

We apply Euler: �̇� ≈ ( )*! %( )
#!

Then we get:

𝑥 𝑘 + 1 − 𝑥 𝑘
𝑇'

= −𝑎𝑥(𝑘) + 𝑏𝑢(𝑘)

This gives the following discrete differential equation (difference equation):

𝑥 𝑘 + 1 = (1 − 𝑇#𝑎)𝑥(𝑘) + 𝑇#𝑏𝑢(𝑘)

This equation can easily be implemented in any text-based 
programming language or the Formula Node in LabVIEW

Where 𝑎 = !
#

and 𝑏 = $
#



Discrete Model in LabVIEW
𝑥 𝑘 + 1 = (1 − 𝑇!𝑎)𝑥(𝑘) + 𝑇!𝑏𝑢(𝑘)

Here we have implemented the model inside a 
Formula Node. In that way we can write the equations 
as we do on paper.
We have also implemented the model as a SubVI then 
we can easily reuse the model in different applications



Simulation Example
Here we have used a standard For 
Loop in our simulation. We specify 
the length of the Simulation with N
(Number of Iterations)

Tstop = N x Ts = 300 x 0.1s = 30s 



“Real-Time” Simulation in LabVIEW
Here we perform “Real-Time” Simulation using a While Loop. Her we can interact with 
the simulation during the execution, we can change simulation parameters any time 
during the simulation, and the simulation runs forever until we click the Stop button.



LabVIEW Code



Hans-Petter Halvorsen

https://www.halvorsen.blog

Simulation Examples
2.order System

Table of Contents

Mass-Spring-Damper System



Mass-Spring-Damper System
The “Mass-Spring-Damper“ System is typical 
system used to demonstrate and illustrate 
Modelling and Simulation Applications 

𝐹 𝑡 − 𝑐�̇� 𝑡 − 𝑘𝑥 𝑡 = 𝑚�̈�(𝑡)

Force - 𝐹[𝑁], Spring constant - 𝑘[𝑁/𝑚], Damping coefficient - 𝑐[𝑘𝑔/𝑠], Position - 𝑥[𝑚/𝑠], 
Velocity -	�̇�[𝑚/𝑠"], Acceleration -	�̇�[𝑚/𝑠"], Mass - 𝑚[𝑘𝑔]



Mass-Spring-Damper System
Given a so-called "Mass-Spring-Damper" system

𝐹 𝑡 − 𝑐�̇� 𝑡 − 𝑘𝑥 𝑡 = 𝑚�̈�(𝑡)

The system can be described by the following equation:

Where 𝑡 is the time, 𝐹(𝑡) is an external force applied to the system, 𝑐 is the 
damping constant, 𝑘 is the stiffness of the spring, 𝑚 is a mass.

𝑥(𝑡) is the position of the object (𝑚)

�̇� 𝑡 	is the first derivative of the position, which equals the velocity/speed 
of the object (𝑚)

�̈�(𝑡)	is the second derivative of the position, which equals the acceleration 
of the object (𝑚)

Newtons 2.law: ∑𝐹 = 𝑚𝑎



Mass-Spring-Damper System
𝐹 𝑡 − 𝑐�̇� 𝑡 − 𝑘𝑥 𝑡 = 𝑚�̈�(𝑡)

𝑚�̈� = 𝐹 − 𝑐�̇� − 𝑘𝑥

�̈� =
1
𝑚 𝐹 − 𝑐�̇� − 𝑘𝑥

Higher order differential equations can typically 
be reformulated into a system of first order 
differential equations

We set 
𝑥 = 𝑥!
�̇� = 𝑥"

This gives:
�̇�! = 𝑥"
�̇�" = �̈�= !

+
𝐹 − 𝑐�̇� − 𝑘𝑥 = !

+
𝐹 − 𝑐𝑥" − 𝑘𝑥!

�̈� =
1
𝑚

𝐹 − 𝑐�̇� − 𝑘𝑥
�̇�C = 𝑥P
�̇�P =

C
Q
𝐹 − 𝑐𝑥P − 𝑘𝑥C

Finally:

𝑥!= Position
𝑥"= Velocity/Speed



Discretization
Given:

�̇�# = 𝑥$
�̇�$ =

#
%
𝐹 − 𝑐𝑥$ − 𝑘𝑥#

Using Euler:

�̇� ≈
𝑥 𝑘 + 1 − 𝑥(𝑘)

𝑇&

Then we get:
𝑥# 𝑘 + 1 − 𝑥# 𝑘

𝑇&
= 𝑥$ 𝑘

𝑥$ 𝑘 + 1 − 𝑥$ 𝑘
𝑇&

=
1
𝑚

𝐹(𝑘) − 𝑐𝑥$ 𝑘 − 𝑘𝑥# 𝑘

This gives:
𝑥# 𝑘 + 1 = 𝑥# 𝑘 + 𝑇&𝑥$ 𝑘

𝑥$ 𝑘 + 1 = 𝑥$ 𝑘 + 𝑇&
1
𝑚

𝐹(𝑘) − 𝑐𝑥$ 𝑘 − 𝑘𝑥# 𝑘

Then we get:
𝑥# 𝑘 + 1 = 𝑥# 𝑘 + 𝑇&𝑥$ 𝑘
𝑥$ 𝑘 + 1 = −𝑇&

'
%
𝑥# 𝑘 + 𝑥$ 𝑘 − 𝑇&

(
%

 𝑥$ 𝑘  + 𝑇&
#
%
𝐹(𝑘)

Finally:

𝑥# 𝑘 + 1 = 𝑥# 𝑘 + 𝑇&𝑥$ 𝑘
𝑥$ 𝑘 + 1 = −𝑇&

'
%
𝑥# 𝑘 + (1 − 𝑇&

(
%
)𝑥$ 𝑘 + 𝑇&

#
%
𝐹(𝑘)

This can be implemented in LabVIEW



Model Implementation in LabVIEW

We make a SubVI



Simulation in LabVIEW



LabVIEW



Hans-Petter Halvorsen

https://www.halvorsen.blog

ODE Functions 
in LabVIEW

Table of Contents



ODE Functions in LabVIEW



ODE Euler Method.vi

Here we have 
“hardcoded” the values 
for K and T into the 
equation – which is not 
a good solution



ODE Euler Method.vi – Alt2

Here we have used the 
“Format Into String” function.
In that way we don’t need to
“hardcode” the values for K 
and T into the equation



ODE Solver.vi

Here we have used “ODE Solver.vi” 
instead of “ODE Euler Method.vi”



ODE Solver.vi

As you see we get the same results



ODE Substitute Parameters in Formula.vi
This VI is not made by me. I found it in one of the ODE 

Examples provided by NI and made some small adjustments

This VI basically parse the 
Variables Names and Variable 

Values into a string that can be 
used by the ODE Solver.vi



Mass-Spring Damper System

See if you can use “ODE Solver.vi” for 
implementing and simulating the Mass-Spring 
Damper System as well (I leave that to you)

�̇�C = 𝑥P
�̇�P =

C
Q 𝐹 − 𝑐𝑥P − 𝑘𝑥C



Hans-Petter Halvorsen

https://www.halvorsen.blog

Python Integration

Table of Contents



Python Integration



Python Integration Example
def c2f(Tc):

Tf = (Tc * 9/5) + 32
return Tf

def f2c(Tf):
Tc = (Tf - 32)*(5/9)
return Tc 

fahrenheit.py

from fahrenheit import c2f, f2c

Tc = 0

Tf = c2f(Tc)

print("Fahrenheit: " + str(Tf))

Tf = 32

Tc = f2c(Tf)

print("Celsius: " + str(Tc))

We test if it works:

We start by making the Python code using 
Spyder or another Python Editor

We make a Python Module with 2 Functions, one that 
converts from Celsius to Fahrenheit and another that 
converts from Fahrenheit to Celsius



Python Integration Example

Note! LabVIEW and Python needs to match. If you 
use a 32bit LabVIEW version, you also need to use 
a 32bit Python version



Simulation
import numpy as np

def sim_ex():
# Model Parameters
K = 3
T = 4
a = -1/T
b = K/T

#Simulation Parameters
yk = 0
uk = 1
Tstop = 30
Ts = 1
N = int(Tstop/Ts) # Simulation length

data = []
data.append(yk)

# Simulation
for k in range(N):

#Model Implementation 
yk1 = (1 + a*Ts) * yk + Ts*b*uk

yk = yk1
data.append(yk1)

t = np.arange(0,Tstop+Ts,Ts)
return t, data

import matplotlib.pyplot as plt
from Simulation import sim_ex

#Run Simulation
t, data = sim_ex()

# Plot the Simulation Results
plt.plot(t,data,'-*')
plt.title('1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

Simulation.py

Here we make a discrete 
simulation example in Python 
using our 1.order model from 
previous examples



LabVIEW Simulation Example



LabVIEW Simulation Example



Virtual Python Environment
• With Python you can create Virtual Environments.
• Here you can install your independent set of Python packages.
• In that way you can create an isolated environment where you 

can run your Python Applications/Scripts without destroying for 
other Applications/Scripts using other versions of different 
Python packages.

• You can create a Virtual Python Environment using venv
command:
python -m venv /path/to/new/virtual/environment

• You can also use tools like Visual Studio, VenviPy, etc. to do this 
from a user interface.



Virtual Environment with Visual Studio



Virtual Python Environment



Hans-Petter Halvorsen

https://www.halvorsen.blog

MATLAB Integration

Table of Contents



MATLAB Integration

Alternative 1:

Alternative 2:



MATLAB Integration Alt1



MATLAB Integration Alt1



MATLAB Integration Alt2
function [t, x1, x2] = mass_spring_damper_system()

% Simulation of Mass-Spring-Damper System
clear
clc

% Model Parameters
c = 4; % Damping constant
k_stiff = 2; % Stiffness of the spring
m = 20; % Mass
F = 5; % Force

% Simulation Parameters
Ts = 0.1;
Tstart = 0;
Tstop = 60;
N = (Tstop-Tstart)/Ts; % Simulation length
t = Tstart : Ts : Tstop;
x1 = zeros(N,1);
x2 = zeros(N,1);
x1(1) = 0; % Initial Position
x2(1) = 0; % Initial Speed

% Simulation
for k=1:N   

x1(k+1) = x1(k) + Ts * x2(k);
x2(k+1) = (-(Ts*k_stiff)/m) * x1(k) + (1 - (Ts*c)/m) * x2(k) + (Ts/m) * F;

end



MATLAB Integration Alt2



MATLAB Integration Alt2



MATLAB Alt2 - Improved
• In the Alt2 Example we just got the results 

from the Simulation
• Let's also make it possible to set the Model 

Parameters, etc. from LabVIEW
• This will then be sent as arguments to the 

MATLAB Function



MATLAB Alt2 - Improved
function [t, x1, x2] = mass_spring_damper_system2(c, k_stiff, m, F)
% Simulation of Mass-Spring-Damper System

% Simulation Parameters
Ts = 0.1;
Tstart = 0;
Tstop = 60;
N = (Tstop-Tstart)/Ts; % Simulation length
t = Tstart : Ts : Tstop;
x1 = zeros(N,1);
x2 = zeros(N,1);
x1(1) = 0; % Initial Position
x2(1) = 0; % Initial Speed

% Simulation
for k=1:N   

x1(k+1) = x1(k) + Ts * x2(k);
x2(k+1) = (-(Ts*k_stiff)/m) * x1(k) + (1 - (Ts*c)/m) * x2(k) + (Ts/m) * F;

end



MATLAB Alt2 - Improved



Hans-Petter Halvorsen

https://www.halvorsen.blog

“Discrete Integrator”

Table of Contents



“Discrete Integrator”
• In previous examples we needed to first find a 

discrete version of our differential equation(s) 
using Euler or other discretization methods

• In can be time-consuming and cumbersome to 
find these discrete differential equations

• So, we may want to create a “Discrete Integrator” 
and in that way we don’t need to solve or find 
discrete versions of the differential equation(s)

R 	�̇� 𝑥



Integrator
Assume a general Differential Equation:

�̇� = 𝑓 𝑡, 𝑥
The purpose is to find 𝑥.
So, to find 𝑥 we can Integrate 𝑓 𝑡, 𝑥 :

𝑥 = 	/𝑓 𝑡, 𝑥



Discrete Integrator
Given

�̇� = 𝑓 𝑡, 𝑥
We use Euler to find a discrete version 

�̇� ≈
𝑥 𝑘 + 1 − 𝑥 𝑘

𝑇:
Then we get:

𝑥 𝑘 + 1 − 𝑥 𝑘
𝑇:

= 𝑓(𝑘)

Which gives:
𝑥 𝑘 + 1 = 𝑥 𝑘 + 𝑇:𝑓(𝑘)



LabVIEW Integrator
Her is the LabVIEW implementation of our Integrator. Basically, we 
can use this for all kind of differential systems, either we have one 
or many differential equations. Here is a Formula Node used, but 
you could have used pure LabVIEW code as well



LabVIEW Integrator – Alt2
Here we have used pure LabVIEW code 
instead of a Formula Node

We can also improve the Integrator block by implementing 
Saturation, i.e., include inputs for Lower Limit and Upper Limit



Simulation Example
We have the general differential equation:

�̇� = 𝑓 𝑡, 𝑥

Then
𝑥 = ∫𝑓 𝑡, 𝑥

Let's test out this discrete Integrator on our standard 1.order system:

�̇� =
1
𝑇
(−𝑥 + 𝐾𝑢)



LabVIEW
R 	�̇� 𝑥

�̇� =
1
𝑇 (−𝑥 + 𝐾𝑢)

Now we only need to implement the right side of the 
differential equation. Then we use our new “Discrete 
Integrator” to find the solution in each iteration



LabVIEW



2.order System
Let's test out new Integrator block on a 2.order system. We can use the previous Mass-Spring-
Damper System: �̇�C = 𝑥P

�̇�P =
C
Q 𝐹 − 𝑐𝑥P − 𝑘𝑥C



LabVIEW - 2.order System



LabVIEW - 2.order System

It is also possible to implement this in a more general way, i.e., create 
our own “ODE Solver.vi” that we used in one of the previous examples



Hans-Petter Halvorsen

https://www.halvorsen.blog

1.order System with 
Time Delay

Table of Contents



Time Delay

𝑦 = 𝑢(𝑡 − 𝜏)

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

= 𝑒56#

Laplace:

The equation for a Time Delay can be written as:

𝑦(𝑠) = 𝑢(𝑠)𝑒5S<

This gives the following Transfer function:

Laplace Transformation pairs:

�̇� ⟺ 𝑠𝑥(𝑠)

𝑢(𝑡 − 𝜏) ⟺ 𝑢(𝑠)𝑒"#!

𝜏 is the Time Delay



Time Delay

𝐻(𝑠) = 𝑒!"#
Transfer Function for Time Delay:

Step Response for a Time Delay:

𝜏
𝑡

1

𝜏 is the Time Delay in seconds



1.order System with Time Delay
A general 1. order System with Time Delay can be written as:

Where 𝐾 is the Gain, 𝑇 is the Time constant and 𝜏 is the Time Delay

�̇� = −𝑎𝑥 + 𝑏𝑢(𝑡 − 𝜏)

Where 𝑎 = $
%

and 𝑏 = &
%

�̇� =
1
𝑇
−𝑥 + 𝐾𝑢(𝑡 − 𝜏)

It can also be written like this:



Transfer Function

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
𝐾

𝑇𝑠 + 1
𝑒!"#

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠) = 𝑒!"#

Transfer Function for Time Delay:

1.order Transfer Function with Time Delay:

Where 𝐾 is the Gain, 𝑇 is the Time constant and 𝜏 is the Time Delay



Step Response
100%

63%

𝐾𝑈

𝑡

𝑇𝜏

𝐻(𝑠) =
𝐾

𝑇𝑠 + 1
𝑒!"#



Discrete Time Delay Function

Assuming, e.g., 𝜏 = 2𝑠 and 𝑇' = 0.1𝑠 we get 𝑢(𝑘 − 20)

This means we must remember the 20 previous samples of 𝑢 𝑘 in our calculations

𝑦 = 𝑢(𝑡 − 𝜏)

Let's create a Discrete Time Delay Function in LabVIEW 

The equation for a Time Delay can be written as:

𝑦(𝑘) = 𝑢(𝑘 −
𝜏
𝑇<
)

Discrete version:
Time 
DelayInput Output



Discrete Time Delay Function
Time 
DelayInput Output

𝑢(𝑘)

𝑢(𝑘 −
𝜏
𝑇'
)

E.g., 
𝜏 = 2𝑠 and 𝑇' = 0.1𝑠
Then we get 𝑢(𝑘 − 20)

A Discrete Time Delay can be 
implemented as a FIFO queue.
FIFO – First In First Out.
The length of the queue will be 

𝑁 = ,
#!

𝑢(𝑘 − 1)
𝑢(𝑘 − 2)
𝑢(𝑘 − 3)

𝑢(𝑘 − 10)

…

…



LabVIEW Time Delay Function
This is one way to implement a Time 
Delay in LabVIEW, but it can also be 
implemented in many other ways



Test Time Delay Function

When k=21 the Output will be 1 in this case



Discretization
We have the continuous differential equation:  �̇� = −𝑎𝑥 + 𝑏𝑢(𝑡 − 𝜏)

We apply Euler: �̇� ≈ ( )*! %( )
#!

Then we get:
𝑥 𝑘 + 1 − 𝑥 𝑘

𝑇'
= −𝑎𝑥(𝑘) + 𝑏𝑢(𝑘 − ,

#!
)

This gives the following discrete differential equation (difference equation):

𝑥 𝑘 + 1 = (1 − 𝑇#𝑎)𝑥(𝑘) + 𝑇#𝑏𝑢(𝑘 − 6
<!
)

Where 𝑎 = !
#

and 𝑏 = $
#

The discrete version of 𝜏 is "#!

Assuming 𝜏 = 2𝑠 and 𝑇' = 0.1𝑠 we get 𝑢(𝑘 − 20)
This means we must remember the 20 previous samples of 𝑢(𝑘)



LabVIEW



LabVIEW



Alternative Model Implementation
Here is the “Integrator” SubVI used (that was created and tested in previous 

examples). By using this SubVI we don't need to find the discrete version of the 
differential equation, we just implement the differential equation “directly”



Hans-Petter Halvorsen
University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no 
Web: https://www.halvorsen.blog  

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

